1 research outputs found

    Deriving Protein Structures Efficiently by Integrating Experimental Data into Biomolecular Simulations

    Get PDF
    Proteine sind molekulare Nanomaschinen in biologischen Zellen. Sie sind wesentliche Bausteine aller bekannten Lebensformen, von Einzellern bis hin zu Menschen, und erfüllen vielfältige Funktionen, wie beispielsweise den Sauerstofftransport im Blut oder als Bestandteil von Haaren. Störungen ihrer physiologischen Funktion können jedoch schwere degenerative Krankheiten wie Alzheimer und Parkinson verursachen. Die Entwicklung wirksamer Therapien für solche Proteinfehlfaltungserkrankungen erfordert ein tiefgreifendes Verständnis der molekularen Struktur und Dynamik von Proteinen. Da Proteine aufgrund ihrer lichtmikroskopisch nicht mehr auflösbaren Größe nur indirekt beobachtet werden können, sind experimentelle Strukturdaten meist uneindeutig. Dieses Problem lässt sich in silico mittels physikalischer Modellierung biomolekularer Dynamik lösen. In diesem Feld haben sich datengestützte Molekulardynamiksimulationen als neues Paradigma für das Zusammenfügen der einzelnen Datenbausteine zu einem schlüssigen Gesamtbild der enkodierten Proteinstruktur etabliert. Die Strukturdaten werden dabei als integraler Bestandteil in ein physikbasiertes Modell eingebunden. In dieser Arbeit untersuche ich, wie sogenannte strukturbasierte Modelle verwendet werden können, um mehrdeutige Strukturdaten zu komplementieren und die enthaltenen Informationen zu extrahieren. Diese Modelle liefern eine effiziente Beschreibung der aus der evolutionär optimierten nativen Struktur eines Proteins resultierenden Dynamik. Mithilfe meiner systematischen Simulationsmethode XSBM können biologische Kleinwinkelröntgenstreudaten mit möglichst geringem Rechenaufwand als physikalische Proteinstrukturen interpretiert werden. Die Funktionalität solcher datengestützten Methoden hängt stark von den verwendeten Simulationsparametern ab. Eine große Herausforderung besteht darin, experimentelle Informationen und theoretisches Wissen in geeigneter Weise relativ zueinander zu gewichten. In dieser Arbeit zeige ich, wie die entsprechenden Simulationsparameterräume mit Computational-Intelligence-Verfahren effizient erkundet und funktionale Parameter ausgewählt werden können, um die Leistungsfähigkeit komplexer physikbasierter Simulationstechniken zu optimieren. Ich präsentiere FLAPS, eine datengetriebene metaheuristische Optimierungsmethode zur vollautomatischen, reproduzierbaren Parametersuche für biomolekulare Simulationen. FLAPS ist ein adaptiver partikelschwarmbasierter Algorithmus inspiriert vom Verhalten natürlicher Vogel- und Fischschwärme, der das Problem der relativen Gewichtung verschiedener Kriterien in der multivariaten Optimierung generell lösen kann. Neben massiven Fortschritten in der Verwendung von künstlichen Intelligenzen zur Proteinstrukturvorhersage ermöglichen leistungsoptimierte datengestützte Simulationen detaillierte Einblicke in die komplexe Beziehung von biomolekularer Struktur, Dynamik und Funktion. Solche computergestützten Methoden können Zusammenhänge zwischen den einzelnen Puzzleteilen experimenteller Strukturinformationen herstellen und so unser Verständnis von Proteinen als den Grundbausteinen des Lebens vertiefen
    corecore